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A computer program POLYGRAD based on the POLYATOM/1 system is presented which 
evaluates analytically the energy gradient using the s-type and Cartesian p-type Gaussian basis func- 
tions. Model calculations on hydrogen peroxide were made to compare the accuracy and the computer 
time involved in the analytical and numerical determinations of the energy gradient. 
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1. Introduction 

For many chemical problems the knowledge of energy hypersurfaces is of 
great interest. Not being able to calculate the energy hypersurface analytically one 
is forced to look for numerical ways of calculation. The simplest but extraordinarily 
time consuming approach is to compute the energy for many different geometries, 
i.e. to calculate many points of the hypersurface. 

Another important approach requires energy calculations only for a limited set 
of geometries and the surroundings of the respective points being described in 
terms of truncated Taylor expansions. A manageable version of this procedure 
limits itself to the first terms of these expansions: in such a way the gradient method 
is reached. The energy gradient computations are inherent to the most efficient 
geometry optimization methods like the variable metric method [-1]. Explicit 
evaluation of the energy gradient is also involved in the force method [2] which 
appears to be the most suitable method for the determination of the force constants 
of polyatomic molecules from both the accuracy and feasibility viewpoints. In the 
SCF-MO-LCAO treatments, the analytical computation of the energy gradient 
requires the analytical evaluation of derivatives of integrals over the basis func- 
tions with respect to all nuclear coordinates. In the semiempirical treatments based 
on CNDO or MINDO only overlap and two-centre electronic repulsion integrals 
are to be differentiated. Since the necessary derivatives of integrals are expressible 
in closed analytic forms [3], the computer programs [3-5] are now available for 
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routine geometry optimizations. A computer program on the ab initio level 
reported by Pulay [6] makes use of the Gaussian lobe functions. Here the dif- 
ferentiation is simple because the derivatives of integrals over basis set s-type 
functions can be computed through the mere evaluation of the (pslss) type integ- 
rals. In the present paper we report on the procedure based on the POLYATOM 
system by making use of the Cartesian Gaussian functions. We considered it 
expedient to develop such a computer program for two reasons. First, the ab initio 
SCF calculations are mostly performed just with the Cartesian Gaussian functions 
and, second, the POLYATOM system is one among the most widespread ab initio 
programs. 

2. Description of the Computer Program 

The expression of Moccia [7] for the derivative of energy supplemented for the 
nuclear repulsion term 

~E ~H ~P t 
~A (1) 

reduces the problem mainly to the evaluation of derivatives of all the integrals. 
By % we imply a Cartesian coordinate of the atom A. The matrices H and P refer 
to one-electron and two-electron parts of the Hamiltonian, respectively; D is the 
density matrix and S is the overlap matrix. B and Z are defined as follows 

Bij = 2 Z es Ci~ Cj~ (2) 
$ 

z=  2zz  ' (s) 
g > v  #v 

Here es stands for orbital energies, the summation over s goes through the occupied 
orbitals, z are the nuclear charges and r,, are interatomic distances. 

We called the program POLYGRAD because it follows rather closely the 
philosophy and the structure of the POLYATOM/1 I-8] QCPE 47.1 program. We 
adopted the modifications involved in the improved version [9] of the program 
that permits to employ contracted basis sets and avoids system-dependent file 
handling subroutines. POLYGRAD is thus fully system independent except for 
statements that assign 2 and 4 bytes to integers and 4 and 8 bytes to real numbers. 
The subroutines for the actual gradient computation are so written that they can 
be incorporated into the unmodified POLYATOM system with little effort. 

The program accommodates the s-type and Cartesian p-type Gaussian func- 
tions and the geometry transformation for the local integration is performed by 
rehybridizing the basis set functions. This results in geometry-dependent hybridi- 
zation coefficients. The integral finally is the sum of products of a local integral 
with a geometry-dependent coefficient which in turn is made up by the hybridiza- 
tion coefficients. Thus our problem breaks down into obtaining the derivatives 
of the local integrals and the derivatives of the geometry-dependent coefficients. 

The evaluation of the derivatives of the local integrals is performed by dif- 
ferentiating the so-called elementary functions. This is straightforward, especially 
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as the function F M C H  can be used for the derivatives, too. The derivatives of  the 
coefficients are evaluated by differentiation of the rotation matrix and by subse- 
quent combination with the hybridization coefficients. 

The input to the program is almost the same as to the POLYATOM/1 program. 
The calculation of  the integral labels is done with a minor modification by the 
program PA20. The, part PA30 of  POLYATO M is replaced by PAG30, which is 
built up in a fully analogous way using many subroutines of PA30. PAG30 com- 
putes simultaneously for each integral the relevant derivatives and stores them on 
tape separately for the X, Y and Z coordinates. The files for the latter are approxi- 
mately four times longer than a file for integrals, since for each electron repulsion 
integral we store its derivatives with respect to four nuclei on which, in the general 
case, the basis functions are centered. 

The SCF part is a slightly modified version of PA40; the modification con- 
cerns the orbital energies and occupancies that are written on tape. To avoid con- 
fusion we call it PAG40. A program part PAG50 is added which reads in the 
derivatives of  the integrals and the results of the SCF part from tape and sets up 
the gradient using Moccia's equation. The gradient is stored on tape for later use 
(e.g. for the geometry optimization). 

The program P O L Y G R A D  has been written in F O R T R A N  IV for an IBM 
370/135 computer and will be available on request from the Gesellschaft ffir 
Mathematik und Datenverarbeitung in Darmstadt  [10]. 

3. M o d e l  C a l c u l a t i o n  on H y d r o g e n  P e r o x i d e  

To show the virtues of the program we compare here two calculations on 
hydrogen peroxide. Once the energy gradient is computed numerically, i.e. the 
components of the gradient are calculated using the formula 

0E 
[E(c~ ~ + A)  - E ( ~  ~ - A ) ] /2A  (4) 

0c~ A 

We assumed A of 0.005 a.u. Hydrogen peroxide possessing four atoms, the com- 
putation of the gradient involves 24 standard SCF calculations. The second com- 
putation was performed analytically by means of the P O L Y G R A D  program. 
The minimal uncontracted ( 3 s i p / I s )  basis set [-8] was used. For  the hydrogen 
functions we take the exponent 0.28294 [11]. The geometry assumed is given in 
Table 1. In actual calculations the symmetry of H202 was disregarded, because the 

Table 1. Geometry assumed for H202 

Centre Coordinates" 

x y z 

H1 - 1.478739 1.0068375 - 1.5439130 
H2 1.478739 1.0068375 1.5439130 
O1 0 0 - 1.3936900 
02 0 0 1.3936900 

a In a.u. 
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variable metric method is, compared to the point-by-point geometry optimization, 
most effective with molecules of low symmetry. A single standard SCF calculation 
lasts 6 minutes on the IBM 370/135 computer, i.e. 144 minutes are needed for the 
full evaluation of the energy gradient. The calculation by the POLYGRAD pro- 
gram lasts 44 minutes. The results of the two calculations are given in Table 2. The 

Table 2. Energy gradient of H20 2 computed numerically and analytically 

Atom Gradient Components a 

Numerical Analytical 

x y z x y z 

H1 0.00589 --0.00207 0.03421 0.00579 -0.00211 0.03424 
H2 - 0.00589 - 0.00207 - 0.03421 - 0.00579 - 0.00211 - 0.03424 
O1 0.02978 0.00205 -0 .21351 0.02995 0.00211 -0 .21354  
0 2  -0 .02978 0.00205 0.21351 -0 .02995 0.00211 0.21354 

In a.u. ; for the geometry assumed see Table 1. 

entries permit to judge the degree of accuracy of the numerical procedure. Up to 
now no great effort was devoted to reducing the computation time. Actually, the cal- 
culation of the energy gradient lasts still rather long as it is about six times longer 
than the calculation of the wave function alone. Meyer and Pulay reported [12] 
that with their program [6] the factor is only 2. There are probably two reasons 
for this difference. First, the program of Meyer and Pulay is based [13] on lobe 
functions, the differentiation of which is considerably simpler. Second, our sub- 
routines for differentiation of integrals are certainly less effective than the original 
POLYATOM subroutines for evaluation of integrals. We hope, however, to be 
able in future to improve the former and to accelerate the POLYGRAD program. 
In a forthcoming paper we are going to test the utility of the program in geometry 
optimizations. 
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